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Abstrac-An analysis is performed to study the flow and the vortex ins~bility of natural convection in a 
porous medium that results from simultaneous diffusion of heat and mass in a boundary layer adjacent to 
a horizontal surface. Numerical results for the Nusselt number, Sherwood number, and the neutral stability 
curves are presented for Lewis numbers ranging from 1 to 10 and the buoyancy ratio in the range of -0.5 
to 4. For mass transfer aiding the flow, the results indicate that the Nusselt number and Sherwood number 
are higher than those for pure thermal convection and the flow is more susceptible to the vortex instabiIity, 
while for mass transfer opposing the flow, the opposite trend is true. The critical thermal Rayleigh number 

is found to increase with decreasing Lewis number. 

1. INTRODUCTION 

THERE ME many natural convections in porous media 
which occur in natural and in technolo~cal appli- 
cations in which flows are driven simultaneously by 
the differences in temperature and concentration. The 
applications include the migration of moisture 
through the air contained in the fibrous insulations 
and the grain storage installations, and the dispersion 
of chemical contaminants through water-saturated 
soil. 

Bejan and Khair fl] anaiysed the vertical natural 
convection boundary layer flow in a porous medium 
resulting from the combined buoyancy mechanism. 
The natural convection phenomenon occurring inside 
a porous enclosure with both heat and mass transfer 
from the side was studied by Trevisan and Bejan [2]. 
Raptis et al. [3] studied the influence of free convection 
flow and mass transfer on the steady flow of a viscous 
fluid through a porous medium, which is bounded by 
a vertical infinite plate, when the temperature and 
concentration on the plate are kept constant. 

The onset of convection of the flow in a horizontal 
porous layer with imposed vertical temperature and 
concentration gradient has been the subject of studies 
by Nield [4], Gershuni et al. [S] and Turner and 
Gustafson [6]. The wave mode and vortex mode of 
instability of a horizontal and inclined natural con- 
vection boundary layer of a viscous fluid under the 
combined buoyancy effects were examined by Pera 
and Gebhart [7] and Chen et al. [8], respectively. Hsu 
et al. [9] and Hsu and Cheng [lo] analysed the vortex 
mode of instability of ho~zont~ and inclined natural 
convection flows in a porous medium caused solely 
by a single buoyancy effect, namely, the effect of tem- 
perature variation. However, the vortex mode of 

instability of a natural convection in a porous medium 
along a horizontal surface, under the combined ther- 
mal and mass diffusion processes, seems not to have 
been investigated. This motivates the present inves- 
tigation. As might be expected, the results for a porous 
medium resemble those for a viscous fluid. However, 
there are some differences, notably those arising from 
the boundary conditions and the governing equations 
that differ in the two problems. 

2. MATHEMATICAL ANALYSIS 

2.1. The basejlow 
Before proceeding to the instability problem, con- 

sideration is given first to the basic natural convection 
flow along a horizontal surface, since the computation 
of instability criteria requires a knowledge of the vel- 
ocity, temperature and concentration profiles for the 
main flow and the sofution has not been investigated 
before. 

The base flow analysis treats a semi-infinite, hori- 
zontal isothermal (TO) and isoconcentration (C,) sur- 
face embedded in a saturated porous medium at tem- 
perature T, (c T,,) and concentration C, (c C,). 
The physical situation is shown in Fig. 1, where x 
represents the distance along the plate from the lead- 
ing edge and y represents the distance normal to the 
surface. 

The following conventional assumptions simplify 
the analysis. 

(1) The physical properties are considered to be 
constant, except for the density term that is associated 
with the body force. 

(2) Flow is sufficiently slow that the convecting 
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NOMENCLATURE 

a dimensional spanwise wave number be, /IT coefficients of concentration, thermal 
C mass fraction of the diffusing species expansion 
C’ perturbation mass fraction of the S,, 6, concentration, thermal boundary layer 

diffusing species thickness 
C disturbance mass fraction amplitude 

r” 

mass diffusivity ; 
similarity variable 
dimensionless temperature 

similarity stream function profile 0 dimensionless disturbance temperature 

k” 
gravitational acceleration amplitude 
dimensionless wave number 1 dimensionless mass fraction 

K Darcy permeability A dimensionless disturbance mass fraction 
L length of wall amplitude 
Le Lewis number, u/D iJL,V absolute, kinematic viscosity 
N buoyancy ratio 5 volumetric heat capacity of the saturated 
NU Nusselt number, q'/k , (T,, - T, ) porous medium to that of the fluid 

Nu, local Nusselt number P density 
P, P’ main flow, perturbation pressure temporal growth constant 

& Rayleigh number, KgjL(T,,-T,)/av ; porosity of the medium 

Ra, local Rayleigb number ti stream function 
Sh Sherwood number, j'/D(& - C,) $ disturbance stream function 

Sh, local Sherwood number disturbance stream function amplitude 
t time Y dimensionless disturbance stream 
T temperature function amplitude. 

5 
perturbation temperature 
disturbance temperature amplitude 

li x-direction disturbance velocity superscripts 
amplitude * critical condition 

u, v, w Darcy’s velocity in x-, y-, z-direction main flow quantity 
u’, VI, w’ axial, normal, and spanwise amplitude function for disturbance. 

components of velocity disturbances 
x, y, z axial, normal, and spanwise coordinates. 

Subscripts 
Greek symbols 0 condition at the wall 

a effective thermal diffusivity co condition at the free stream. 

fluid and the porous matrix are in local thermo- ing to the above assumptions are 
dynamic equilibrium. %. 2.. 

(3) The processes occur at low concentration 
difference such that the diffusion-therm0 and thermo- 
diffusion effects and the inter-facial velocity due to 
mass diffusion can be neglected. 

(4) Darcy’s law, the Boussinesq and boundary 
layer approximations are employed. 

The equations that account for the conservation of 
mass, momentum, energy and concentration accord- 

0 x 

FIG. 1. Temperature and concentration boundary layers in 
natural convection along a horizontal surface in a fluid- 

saturated porous medium. 

r!t+!!?,(-J 
ax ay 

aT aT a2T 
u~+vay=aay2 (3) 

ac ac a2c 
uz+vdy=DdyZ (4) 

where K is the permeability of the saturated porous 
medium; bT and BE are the coefficients for thermal 
and concentration expansion ; a and D represent the 
equivalent thermal and mass diffusivity. Other various 
symbols are defined in the Nomenclature. 

The boundary conditions for the above set of equa- 
tions are simple if we neglect any induced velocity at 
the surface caused by the mass diffusion effect. They 
are 
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at x = 0, u=O, T=T,, C=Cm f(O).= 0, 0(O) = 1, A(O) = 1 

aty = 0, v=O, T=T,,, C=CO f’(m) = 0, e(m) = 0, I(m) = 0. (11) 

asy+co, u-0, T+T,, C-+C,. (5) In terms of the dimensionless variables, it can be 

On introducing the following transformation : 
easily shown that the local Nusselt number and Sher- 
wood number are given by 

q =gRa;j3, $ = crRa;” f(q) 

&=-Tm _ C-C, 

T,-T, A= C,-C, (6) 

Nu, = -P(O) Ray (12) 
Sh, = -A’(O) Rail’. (13) 

2.2. The disturbanceflow 

where Ra, = g/&Kx( T0 - T,)/av is the modified local The standard method of linear stability theory in 

thermal Rayleigh number, and II/ is the stream func- which the instantaneous values of velocity, pressure, 

tion which automatically satisfies equation (1) the temperature and concentration components are per- 

following similarity equations are obtained : turbed by small amplitude disturbances and the mean 

f”- ;s(e/+Nn) = 0 

flow quantities subtracted, with terms higher than 
(7) first order in disturbance quantities being neglected, 

results in the following equations : 

@“+ ; ffY = 0 

A”+ $ far = 0. 

In the above equations, the primes indicate the deriva- 
tive with respect to the similarity variable rl; Le = a/D 
is the Lewis number; N the buoyancy ratio which is 
defined as 

When N = 0, equations (7) and (8) reduce to those 
equations for flow over a horizontal flat plate without 
mass transfer [I I]. 

Following the scale analysis as described by Bejan 
and Khair [I], the flow, heat/mass transfer and 
boundary layer thickness scales can be obtained as 
shown in Table 1. It is seen that the streamwise vel- 
ocity (u) scales for the heat-transfer-driven and mass- 
transfer-driven flows are ur N a Raf3/L and URN 
a(RaL(N1)2/3 Le- “3/L, respectively. Therefore, the 
flow becomes dominated by heat buoyancy when 
N’/Le < 1 (i.e. uT > u,,J and by mass buoyancy when 
N2/Le > I (i.e. u,< u,,& When N < 0 and 
N2/Le N 1, the flow violates the boundary layer 
assumptions because in this range the temperature 
and concentration buoyancy effects are of the same 
order of magnitude and in opposite directions. 

The boundary conditions are transformed as fol- 
lows : 

!c+!c+!!Lo 
a~ ay az 

u’ -_ 
KdP --- 
P ax 

(14) 

(15) 

vI = _ _K dP’ ~ -jjj- -P(BT~+BcC’)S 1 (16) 

w' =5 K apt --_ 
I* az (17) 

(W 

= D 

( 
a*c + av + a*c* -- 
ax2 ay* a22 > 

(19) 

where the barred and primed quantities signify the 
mean flow and disturbance flow components, respec- 
tively, r is the vohnnetric heat capacity of the satu- 
rated porous medium to that of the &rid, and 4, the 
porosity of the medium. 

Following the method of order-of-magnitude 
analysis prescribed in detail by Hsu and Cheng [lo] 
for free convection. flow over an inclined surface in 
a porous medium without mass transfer, the terms 

Table 1. Flow, heat/mass transfer and boundary layer thickness scales near a horizontal wall in a porous medium with 
comb&d buoyancy effects 

Driving 
mechanism II Nl4 

Obser- 
6% vations 

Heat transfer a R@ /L L RUC ‘I3 L&- v2 &i l/X Rq fill3 f&w Le >> 1 
lNI << 1 a Raz” /L L Rai “3 L&g113&-’ R% Ra’i3 4% Le << 1 
Mass transfer a(Ra, lN1)*” L-zT-“~/L L(Ra, INI)-“3Le”6 L(Ru&?/N[)-“~ (RUG lNI)“-‘Le- ‘FJ (Ru~L~INI)“~ Le cc 1 
INI >> 1 a(Ru, Ii?I)“3Le- *13jL L(Ra& INI)-” LQ*‘~ L(Ru,L&VI)-“” (Ru,. lN1)“3 LJ?-*‘~ (Ru,L~(NI)“~ Le >> 1 
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&‘/ax, PT’/ax’, i?‘C’/ax’ in equations (14), (18) and 
(19) can be neglected. The omission of &‘/ax in equa- 
tion (14) implies the existence of a disturbance stream 
function I++’ such that 

We assume that the three-dimensional disturbances 
are of the form 

(ti’, u’, T’, C’) = [&(x,_V), fi(X,Y), %Y), WY)1 

xexp(iaz+at+y(x)) (21) 

where a is the spanwise periodic wave number, Q the 
temporal growth factor while 

y(x) = ai(x)dx 

with a,(x) denoting the spatial growth factor. Sub- 
stituting equation (21) into equations (15)-(19) and 
setting Q = ai = 0 for neutral stability yields 

(22) 
. ., a3p 
la’ = axay 

.(~-~2~)=,~+~~+e~-i.~~. (25) 

Equations (22)-(25) are solved based on the local 
similarity approximations [IO], wherein the dis- 
turbances are assumed to have weak dependence in 
the streamwise direction (i.e. a/ax << a/Q). We let 

k = ax/Raj13 

Y(q) = &/icc Rail3 

WI) = f/V, - Ten) 

Ml) = mGl - Cm). (26) 

which gives the following system of equations for the 
local similarity approximations : 

Y”-k2Y = -kRu;‘3(O+NA) (27) 

@“+&j-W-k% = $$‘[(2$S”‘+Y’)/(kRa;‘3)] 

+ k Ra:” WY (28) 

A”+:&fA’-k2A = Le{fr$‘[(2qY”+Y’)/(kRa;‘3)] 

+ k Ra.:” A’Y} (29) 

with boundary conditions 

O(0) = A(0) = Y(0) = 0 

O(co)=A(co)=Y(co)=O (30) 

where the primes indicate the derivative with respect 
to q. Equations (27)-(30) constitute a sixth-order sys- 

tern of linear ordinary differential equations for the 
disturbance amplitude distributions Y(q), O(v) and 
A(v). For fixed Le and N, solutions Y, 0 and A are 
eigenfunctions for eigenvalues Ra, and k. 

3. NUMERICAL METHOD OF SOLUTION 

In the stability calculations, the disturbance equa- 
tions are solved by separately integrating three linearly 
independent integrals. The full equations may be 
written as the sum of three linearly independent solu- 
tions 

Y = Y, +B*Y2+B3Y3 

0 = 0, +B2@2+B3@3 

A = A, +B,A,+B,A,. (31) 

The three independent integrals (Yi, Oi, Ai), with 
i = 1,2,3, may be chosen so that their asymptotic 
solutions are 

Y, = - 

0, = exp(Aqm), A, = 0 

W3 exp Cm, 1, 

O2 = 0, A, = exp (4_,) 

Y’, = exp(-kq,), 0, = 0, A3 = 0 (32) 

where 

“f = -;/-_ [(;fm~+k2-,‘i2 

‘= +r-- [(;fmy+k2]“‘_ (33) 

A sixth-order Runge-Kutta, variable step size inte- 
gration routine is used here to solve first the sixth- 
order base flow system, equations (7)-(g), and the 
results are stored for a fixed step size, All = 0.02, 
which is small enough to predict accurate linear 
interpolation between mesh points. Equations (27)- 
(29) with boundary conditions, equations (30), are 
then solved as follows. For specified Le, N and k, Ra, 
is guessed. Using equations (32) as starting values, the 
three integrals are integrated separately from the outer 
edge of the boundary layer to the wall using a sixth- 
order Runge-Kutta variable size integrating routine 
incorporated with the Kaplan filtering technique [ 121 
to maintain the linear independence of the eigen- 
functions. The required input of the base flow to the 
disturbance equations is calculated, as necessary, by 
linear interpolation of the stored base flow. From the 
values of the integrals at the wall, B2 and B3 are 
determined using the boundary conditions O(0) = 0 
and A(0) = 0. The third boundary condition Y(0) = 0 
is satisfied only for an appropriate value of the eigen- 
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value Ra,. A Taylor series expansion of the third 
condition provides a correction scheme for the initial 
guess of Ra,. Iterations continue until the third 
boundary condition is sutliciently close to zero 
(< 10m5, typically). 

4. RESULTS AND DISCUSSIONS 

Numerical results for base flow are obtained for 
Le = l-100, with the buoyancy ratio N ranging from 
-4 to 4. The numerical values of f’(O), W(0) and 
L’(0) for selected values of Le and N are tabulated in 
Table 2. For N = 0, the only contribution to the body 
force is due to thermal diffusion and the results are in 
good agreement with those of Cheng and Chang [ 111. 

Figures 2-4 show the effects of the buoyancy ratio 
Non the velocity, temperature and concentration dis- 
tributions for Le = 1 and 5. It is seen that the aiding 
(N > 0) and opposing (N c 0) buoyancy effects alter 
the form of these distributions. In Fig. 2, we observe 
that, for a given Le, the velocity is increased with 
increasing values of N. For a given aiding buoyancy 
ratio N (>O), the velocity is decreased as Le is 
increased, while for a given opposing buoyancy ratio 
N ( < 0), the velocity is increased as Le is increased. 

Figures 3 and 4 illustrate that, for a fixed Le, an 
increase of the value of N results in a thinning of the 
temperature and concentration boundary layers. It is 

Table 2. Summary of similarity solutions for slip velocity, 
local Nusselt and Sherwood numbers 

Le 

1 

5 

10 

100 

N f'(0) -W(O) -A'(O) 

-0.5 0.660 0.341 0.341 
0.0 1.054 0.430 0.430 
1.0 1.676 0.542 0.542 
2.0 2.196 0.621 0.621 
4.0 3.087 0.136 0.736 

-1.5 0.395 0.337 0.716 
-1.0 0.665 0.379 0.862 
-0.5 0.874 0.408 0.960 

0.0 1.054 0.430 1.037 
1.0 1.369 0.465 1.160 
2.0 1.646 0.494 1.259 
4.0 2.134 0.539 1.416 

-2.0 0.398 0.358 1.032 
-1.5 0.611 0.385 1.197 
-1.0 0.778 0.403 1.311 
-0.5 0.923 0.418 1.403 

0.0 1.054 0.43 1.481 
1.0 1.290 0.450 1.612 
2.0 1.501 0.467 1.722 
4.0 1.878 0.495 1.902 

-4.0 0.650 0.415 3.908 
-2.0 0.870 0.424 4.372 
-1.0 0.965 0.427 4.558 
-0.5 1.011 0.429 4.644 

0.0 1.054 0.430 4.725 
1.0 1.138 0.433 4.878 
2.0 1.218 0.435 5.018 
4.0 1.368 0.440 5.272 

2.4 

1.8 

0.6 

h N=2 - Le=l 

FIG. 2. Dimensionless velocity distribution vs q for selected 
values of N for Le = 1 and 5. 

also shown that, for N > 0, the effect of increasing Le 
is to thicken the temperature boundary layer and to 
thin the corresponding concentration boundary layer, 
while for N < 0, the effect of increasing L..e results in 
a thinning of both layers. 

Figures 5 and 6 give the local Nusselt number and 
Sherwood number for Le = I-100 for a range of N in 
both the aiding and opposing regions. It is observed 
from Fig. 5 that all the curves coincide at N = 0, i.e. 
for pure thermal convection. A positive N increases 
the heat transfer and the increment depends strongly 
on Le. For N > 0, as L.Q increases, the heat transfer is 
seen to decrease. This is because a larger Le provides 
a thicker thermal boundary layer as seen in Fig. 3. 
A negative N produces the opposite effect. Figure 6 

e 

FIG. 3. Dimensionless temperature distribution vs q for 
selected values of N for L.e = 1 and 5. 
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- Le=l 

___-___--L~=~ 

0 1 2 3 4 5 

FIG. 4. Dimensionless concentration distribution vs”, for selected values of N for Le = 1 and 5. 

O.Sj I 

0.7 - 

0.6 - 

z 

t 0.5. 

-4.0 -2.0 0.0 2.0 4.0 

N 

FIG. 5. Local Nusselt number as a function of N for different values of Le. 

6.0 

0.0 L I 1 I 

-4.0 -2.0 0.0 2.0 4.0 

N 

FIG. 6. Local Sherwood number as a function of N for different values of Le. 
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0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

k 

FIG. 7(a). Neutral stability curves for selected values of N, Le = 1. 

2.2 

2.0 
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i 0.8 

0.6 

0.4 

0.2 

0.0 1, , ) ) , , , , , , ) , , , 
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 

k 

RG. 7(b). Neutral stability curves for selected vahias of N, Le = 5. 

0.2 
-I 

<z--y-f- 

I 0 ! 1 1 1 

0 1 2 3 

k 

FIG. 7(c). Neutral stability curves for selected values of N, Le = 10. 

4 
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80 

-0.5 0.0 1.0 2.0 3.0 4.0 

FIG. 8. Critical thermal Rayleigh nun&~ vs N for selected values of Le. 

indicates that, when N is fixed, the surface mass trans- 
fer consistently increases as .lk increases. This is 
because the concentration boundary layer becomes 
increasin~y thinner as Le increases. 

Figures 7(a)-(c) show the effect of the buoyancy 
ratio N on the neutral stability curves for Le = 1, 5 
and 10, respectively. The instability of the flow is 
seen to be affected by the buoyancy force from mass 
diffusion. The neutral curves of Fig. 7 indicate that 
the greater the buoyancy ratio IV, the more susceptible 
is the flow to the vortex mode of instability. In other 
words, under the combined buoyancy models, the 
disturbances are amplified more rapidly for increasing 
N. The variations of the critical thermal Rayleigh 
number Ra,* with the buoyancy ratio N for the three 
Lewis numbers, Le = 1, 5 and 10, are illustrated in 
Fig. 8. It is found that, whether the mass transfer 
is aiding or opposing the flow, the critical thermal 
Rayleigh number is consistently increased as the Lewis 
number is decreased. 

5. CONCLUSIONS 

This paper concerns the flow and vortex instability 
of a horizontal natural convection flow in a porous 
medium which arises due to the interaction of the 
force of gravity and density differences caused by the 
simultaneous diffusion of thermal energy and of 
chemical species. The base flow is assumed to be the 
steady, two-dimensional boundary layer flow, and the 
similarity solution is shown to exist. A linear per- 
turbation analysis is employed in the formulation of 
the neutral stability equations. The numerical results 
indicate as the buoyancy force ratio increases, both 
the surface heat and mass transfer rates increase, caus- 
ing the flow to become more susceptible to the vortex 
instability. The critical thermal Rayleigh number is 
found to be increased as the Lewis number is 
decreased. 
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INSTABILITE D’ECOULEMENT ET DE TOURBILLON POUR UNE CONVECTION 
NATURELLE HORIZONTALE DANS UN MILIEU POREUX ET RESULTANT D’EFFETS 

FLOTTANTS COMBINES DE CHALEUR ET DE MASSE 

R&n&-Une etude est conduite sur l’tcoulement et l’instabilitb de vortex en convection naturelle dans 
un milieu poreux, resultant de la diffusion simultanee de chaleur et de masse dans une couche limite 
adjacente a une surface horizontale. Des rbultats numeriques pour le nombre de Nusselt, le nombre de 
Sherwood, les courbes de stabilite neutre sont presentbs dans le cas des nombres de Lewis entre 1 et 10 et 
des rapports de flottement entre -0,5 et 4. Pour un transfert de masse aidant l’&coulement, les resultats 
indiquent que les nombres de Nusselt et de Sherwood sont plus grands que ceux de la convection thermique 
pure et que l’ecoulement est plus sensible a l’instabilite de vortex, tandis que pour le transfert de masse 
s’opposant a 1’6coulement on constate un comportement inverse. Le nombre de Rayleigh thermique critique 

augmente lorsque le nombre de Lewis diminue. 

STROMUNG UND WIRBELINSTABILITAT BEI HORIZONTALER NATORLICHER 
KONVEKTION IN EINEM PORC)SEN MEDIUM 

Znsarnmenfassung-Die Striimung und die Wirbelinstabilitlt bei natiirlicher Konvektion in einem porijsen 
Medium, welche von gleichzeitiger Wlrme- und Stoffiibertragung in einer zu einer horizontalen, Oberthiche 
benachbarten Grenzschicht herriihrt, wird untersucht. Numerische Ergebnise fiir die Nusselt-Zahl, die 
Sherwood-Z&l und die neutralen Stabiit5tskurven werden fii einen Lewish-Zahl-Bereich von 1 bis 10 und 
ein Auftriebsverhiiltnis im Bereich von-0,5 bis 4 vorgestellt. Wird die Striimung durch Stoffiibertragung 
unterstiltzt, so sind, wie die Ergebnisse zeigen, die Nusselt-Zahl und die Sherwood-Zahl hoher als bei reiner 
thermischer Konvektion, und die Strijmung ist mehr empt%glich fib die Wirbvelinstabilitlt. Behindert 
die StrofIbertragung die Striimung, tritt das entegegengesetzte Verhalten auf. Es ergibt sich, daB die kritische 

therm&he Rayleigh-Zahl mit fallender Lewish-Zahl zunimmt. 

TE’IEHME W BHXPEBA5I HEYCTO$%IklBOCTb FOPHSOHTAJIbHOfi ECTECTBEHHOH 
KOHBEKIDDI B I-IOPHCTO&I CPE)IE I-IPH COBMECTHOM JIEfiCTBHM TEI-IJIOBOft M 

KOHHEHTPADHOHHO$i KOHBEKDHH 

~Anawsnpyercx reqemre E e~xpenaa neycroi%wsocrb eCRCTBeH!iOfi KOHB@KIlHH B IIOpHC- 

~0~cpe~e,Bb13~HHbIeo~~oB~~e~o~~~~Ee~TennaEMaccbl~~o~~cn~,np~1~- 

undt I rOpH3OHTaJIbfiOti IlOBepXHOCTB. l-&hWTBBJIeHar 'IECJIeEEbIe pe3yJlbTBTbl JlJln 'lHW?Jl HyccenbTa, 

mepByna,a T-e KpEBble HeiklQaJlbHOfi yCTOi%SiBOCTH,IIOJQ"leIiHbZe B LUWla3OHe WCWI nbloHCa OT 1 

LIO loEnpHOTHOUreHRHnOLl~MHbD(CllJl OT -&s&l0 4. ~OK~O,rlTOIIpBMBcCOII~EoCe,COHBIIp8B- 
JIeHHOM C TeSeHHeM.¶HCJlB HyCCeJIbTa A mepBy&l BbllUe UO CpaaEeHEBJ CO CJQ"lBeM '4ECTOti TeIUIOBOti 

~oHBe~~,Te~e~e~eHeey~ogPBBonoomouIe~~Bwpe~bhlso3~e~~nTo~peMnrarann 

MacconepeHoCa, npe~nylourero~~e~,cnpaetamrea~~~aan nH,ue~a.Ha~eHo,~o KPHTH- 


